NATURE

The demise of the giant ape Gigantopithecus blacki


  • Von Koenigswald, G. H. R. Eine fossile Säugetierfauna mit Simia aus Südchina. Proc. Sect. Sci. K. Ned. Akad. Wet. Amst. B 38, 872–879 (1935).


    Google Scholar
     

  • Rink, W. J., Wang, W., Bekken, D. & Jones, H. L. Geochronology of Ailuropoda–Stegodon fauna and Gigantopithecus in Guangxi Province, southern China. Quat. Res. 69, 377–387 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Jin, C. et al. Chronological sequence of the Early Pleistocene Gigantopithecus faunas from cave sites in the Chongzuo, Zuojiang River area, South China. Quat. Int. 354, 4–14 (2014).

    Article 

    Google Scholar
     

  • Zhang, Y. & Harrison, T. Gigantopithecus blacki: a giant ape from the Pleistocene of Asia revisited. Am. J. Phys. Anthropol. 162, 153–177 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Ciochon, R. L., Piperno, D. R. & Thompson, R. G. Opal phytoliths found on the teeth of the extinct ape Gigantopithecus blacki: implications for paleodietary studies. Proc. Natl Acad. Sci. USA 87, 8120–8124 (1990).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, L. X. & Zhang, L. Z. New fossil evidence and diet analysis of Gigantopithecus blacki and its distribution and extinction in South China. Quat. Int. 286, 69–74 (2013).

    Article 

    Google Scholar
     

  • Welker, F. et al. Enamel proteome shows that Gigantopithecus was an early diverging pongine. Nature 576, 262–265 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, L. et al. Magnetochronological sequence of the Early Pleistocene Gigantopithecus faunas in Chongzuo, Guangxi, southern China. Quat. Int. 354, 15–23 (2014).

    Article 

    Google Scholar
     

  • Zhang, Y., Kono, R. T., Jin, C., Wang, W. & Harrison, T. Possible change in dental morphology in Gigantopithecus blacki just prior to its extinction: evidence from the upper premolar enamel–dentine junction. J. Hum. Evol. 75, 166–171 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Pei, W. C. & Woo, J. K. New materials of Gigantopithecus teeth from South China. Acta Palaeontol. Sin. 4, 477–490 (1956).


    Google Scholar
     

  • Shao, Q. et al. ESR, U-series and paleomagnetic dating of Gigantopithecus fauna from Chuifeng Cave, Guangxi, southern China. Quat. Res. 82, 270–280 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Takai, M., Zhang, Y., Kono, R. T. & Jin, C. Changes in the composition of the Pleistocene primate fauna in southern China. Quat. Int. 354, 75–85 (2014).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Evolutionary trend in dental size in Gigantopithecus blacki revisited. J. Hum. Evol. 83, 91–100 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Olejniczak, A. J. et al. Molar enamel thickness and dentine horn height in Gigantopithecus blacki. Am. J. Phys. Anthropol. 135, 85–91 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kono, R. T., Zhang, Y., Jin, C., Takai, M. & Suwa, G. A 3-dimensional assessment of molar enamel thickness and distribution pattern in Gigantopithecus blacki. Quat. Int. 354, 46–51 (2014).

    Article 

    Google Scholar
     

  • Dean, M. C. & Schrenk, F. Enamel thickness and development in a third permanent molar of Gigantopithecus blacki. J. Hum. Evol. 45, 381–388 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Kupczik, K. & Dean, M. C. Comparative observations on the tooth root morphology of Gigantopithecus blacki. J. Hum. Evol. 54, 196–204 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Lovell, N. C. Patterns of Injury and Illness in Great Apes (Smithsonian Institution Press, 1990).

  • Jablonski, N. G., Whitfort, M. J., Roberts-Smith, N. & Xu, Q. The influence of life history and diet on the distribution of catarrhine primates during the Pleistocene in eastern Asia. J. Hum. Evol. 39, 131–157 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, L. et al. Environmental fluctuation impacted the evolution of Early Pleistocene non-human primates: biomarker and geochemical evidence from Mohui Cave (Bubing, Guangxi, southern China). Quat. Int. 563, 64–77 (2020).

    Article 

    Google Scholar
     

  • Li, S. P. et al. Pleistocene vegetation in Guangxi, south China, based on palynological data from seven karst caves. Grana 59, 94–106 (2020).

    Article 

    Google Scholar
     

  • Louys, J. & Roberts, P. Environmental drivers of megafauna and hominin extinction in Southeast Asia. Nature 586, 402–406 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hocknull, S. A., Zhao, J. X., Feng, Y. X. & Webb, G. E. Responses of middle Pleistocene rainforest vertebrates to climate change in Australia. Earth Planet. Sci. Lett. 264, 317–331 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Louys, J. et al. Sumatran orangutan diets in the Late Pleistocene as inferred from dental microwear texture analysis. Quat. Int. 603, 74–81 (2021).

    Article 

    Google Scholar
     

  • Crooks, K. R. et al. Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals. Proc. Natl Acad. Sci. USA 114, 7635–7640 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, L., Zhang, L., Zhang, F. & Wu, X. Enamel carbon isotope evidence of diet and habitat of Gigantopithecus blacki and associated mammalian megafauna in the Early Pleistocene of South China. Chin. Sci. Bull. 56, 3590–3595 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Harrison, T., Zhang, Y., Yang, L. & Yuan, Z. Evolutionary trend in dental size in fossil orangutans from the Pleistocene of Chongzuo, Guangxi, southern China. J. Hum. Evol. 161, 103090 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Price, G. J., Louys, J., Faith, J. T., Lorenzen, E. & Westaway, M. C. Big data little help in megafauna mysteries. Nature 558, 23–25 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rule, S. et al. The aftermath of megafaunal extinction: ecosystem transformation in Pleistocene Australia. Science 335, 1483–1486 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 70–75 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Aitken, M. J. An Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-Stimulated Luminescence (Oxford Univ. Press, 1998).

  • Lamothe, M., Auclair, M., Hamzaoui, C. & Huot, S. Towards a prediction of long-term anomalous fading of feldspar IRSL. Radiat. Meas. 37, 493–498 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H. & Olley, J. M. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia. Part 1, Experimental design and statistical models. Archaeometry 41, 339–364 (1999).

    Article 

    Google Scholar
     

  • Guérin, G., Mercier, N. & Adamiec, G. Dose rate conversion factors: update. Anc. TL 29, 5–11 (2011).


    Google Scholar
     

  • Mejdahl, V. Thermoluminescence dating: beta-dose attenuation in quartz grains. Archaeometry 21, 61–72 (1979).

    Article 
    CAS 

    Google Scholar
     

  • Prescott, J. R. & Hutton, J. T. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiat. Meas. 23, 497–500 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Demeter, F. et al. A Middle Pleistocene Denisovan molar from the Annamite Chain of northern Laos. Nat. Commun. 13, 2557 (2022).

  • Joannes-Boyau, R., Grün, R. & Bodin, T. Decomposition of the laboratory gamma irradiation component of angular ESR spectra of fossil tooth enamel fragments. Appl. Radiat. Isot. 68, 1798–1808 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toyoda, S., Voinchet, P., Falguères, C., Dolo, J. M. & Laurent, M. Bleaching of ESR signals by the sunlight: a laboratory experiment for establishing the ESR dating of sediments. Appl. Radiat. Isot. 52, 1357–1362 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duval, M., Sancho, C., Calle, M., Guilarte, V. & Peña-Monné, J. L. On the interest of using the multiple center approach in ESR dating of optically bleached quartz grains: some examples from the Early Pleistocene terraces of the Alcanadre River (Ebro basin, Spain). Quat. Geochronol. 29, 58–69 (2015).

    Article 

    Google Scholar
     

  • Bartz, M. et al. Testing the potential of K-feldspar pIR-IRSL and quartz ESR for dating coastal alluvial fan complexes in arid environments. Quat. Int. 556, 124–143 (2020).

    Article 

    Google Scholar
     

  • Zhou, H. Y., Zhao, J. X., Wang, Q., Feng, Y. X. & Tang, J. Speleothem-derived Asian summer monsoon variations in Central China during 54–46 ka. J. Quat. Sci. 26, 781–790 (2011).

    Article 

    Google Scholar
     

  • Clark, T. R. et al. Discerning the timing and cause of historical mortality events in modern Porites from the Great Barrier Reef. Geochim. Cosmochim. Acta 138, 57–80 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cheng, H. et al. The half-lives of uranium-234 and thorium-230. Chem. Geol. 169, 17–33 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ludwig, K. R. User’s Manual for Isoplot 3.75. A Geochronological Toolkit for Microsoft Excel (Berkeley Geochronology Center, 2012).

  • Eggins, S. M. et al. In situ U-series dating by laser-ablation multi-collector ICPMS: new prospects for Quaternary geochronology. Quat. Sci. Rev. 24, 2523–2538 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Ma, L., Dosseto, A., Gaillardet, J., Sak, P. B. & Brantley, S. Quantifying weathering rind formation rates using in situ measurements of U-series isotopes with laser ablation and inductively coupled plasma-mass spectrometry. Geochim. Cosmochim. Acta 247, 1–26 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bronk Ramsey, C. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37, 425–430 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Bennett, K. D. & Willis, K. J. in Tracking Environmental Change Using Lake Sediments: Terrestrial, Algal and Siliceous Indicators (eds Smol, J. B. et al.) 5–32 (Springer, 2001).

  • Haberle, S. G. et al. A new version of the online database for pollen and spores in the Asia-Pacific region: the Australasian Pollen and Spore Atlas (APSA 2.0). Quat. Aust. 38, 27–31 (2021).


    Google Scholar
     

  • Tang, L. et al. An Illustrated Handbook of Quaternary Pollen and Spores in China (Science Press, 2016).

  • Whitlock, C. & Larsen, C. in Tracking Environmental Change Using Lake Sediments: Terrestrial, Algal and Siliceous Indicators (eds Smol, J. B. et al.) 75–97 (Springer, 2001).

  • Goldberg, P. & Berna, F. Micromorphology and context. Quat. Int. 214, 56–62 (2010).

    Article 

    Google Scholar
     

  • Morley, M. W. et al. Initial micromorphological results from Liang Bua, Flores (Indonesia): site formation processes and hominin activities at the type locality of Homo floresiensis. J. Archaeolog. Sci. 77, 125–142 (2017).

    Article 

    Google Scholar
     

  • Morley, M. W. et al. Hominin and animal activities in the microstratigraphic record from Denisova Cave (Altai Mountains, Russia). Sci. Rep. 9, 13785 (2019).

  • Stoops, G. Guidelines for Analysis and Description of Soil and Regolith Thin Sections (Soil Science Society of America, 2003).

  • Moore, D. M. & Reynolds, R. C. X-Ray Diffraction and the Identification and Analysis of Clay Minerals 2nd edn (Oxford Univ. Press, 1997).

  • Ohishi, T. & Terakawa, M. Characteristics of weathered mudstone with X-ray computed tomography scanning and X-ray diffraction analysis. Bull. Eng. Geol. Environ. 78, 5327–5343 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ryan, C. G. et al. Maia Mapper: high definition XRF imaging in the lab. J. Instrum. 13, C03020–C03020 (2018).

    Article 

    Google Scholar
     

  • Zougrou, I. M. et al. Characterization of fossil remains using XRF, XPS and XAFS spectroscopies. J. Phys. Conf. Ser. 712, 012090 (2016).

    Article 

    Google Scholar
     

  • Roberts, P. et al. Isotopic evidence for initial coastal colonization and subsequent diversification in the human occupation of Wallacea. Nat. Commun. 11, 2068 (2020).

  • Joannes-Boyau, R. et al. Elemental signatures of Australopithecus africanus teeth reveal seasonal dietary stress. Nature 572, 112–115 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, T. et al. Wintertime stress, nursing and lead exposure in Neanderthal children. Sci. Adv. 31, eaau9483 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Calandra, I., Schulz, E., Pinnow, M., Krohn, S. & Kaiser, T. M. Teasing apart the contributions of hard dietary items on 3D dental microtextures in primates. J. Hum. Evol. 63, 85–98 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Schulz, E., Calandra, I. & Kaiser, T. M. Applying tribology to teeth of hoofed mammals. Scanning 32, 162–182 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Schulz, E., Calandra, I. & Kaiser, T. M. Tracing chewing mechanisms in hoofed mammals: 3D tribology of enamel wear. Mamm. Biol. 75S, 24–25 (2020).


    Google Scholar
     

  • Schulz, E., Calandra, I. & Kaiser, T. M. Feeding ecology and chewing mechanics in hoofed mammals: 3D tribology of enamel wear. Wear 300, 169–179 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Arman, S. D. et al. Minimizing inter-microscope variability in dental microwear texture analysis. Surf. Topogr. Metrol. Prop. 4, 024007 (2016).



  • Source link

    Related Articles

    Back to top button